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Introduction

In the applicable examples of Finsler geometry in mathematics, physics and the other
branches of science, the calculations are often very tedious to perform. This takes a lot of
effort and time. So, we have to find an alternative method to do these calculations. One
of the benefits of using computer is the manipulation of the complicated calculations.
This enables to study various examples in different dimensions in applications such as
field theories (cf., for example, [4]) and physical applications (cf., for example, [3], [7]).
The FINSLER package [6] and the new Finsler package [I1] are good illustrations of
using computer in the applications of Finsler geometry.

In this paper, we use the new Finsler (NF-) package [11] to introduce a computa-
tional technique to calculate the components of nullity vectors and kernel vectors. As
an application of this method, we construct three interesting counterexamples. The first
shows that the kernel distribution Kerg and the nullity distribution Ny associated with
the h-curvature R of Cartan connection do not coincide, in accordance with [I0]. The

second proves that the nullity distribution Apo associated with the hv-curvature P of
Berwald connection is not completely integrable. Finally, the third counterexample shows
that the nullity distribution Ny associated with the curvature SR of Barthel connection
is not a sub-distribution of the nullity distribution Ngo associated with the h-curvature

]O% of Berwald connection.

Following the Klein-Grifone approach to Finsler geometry ([1, [2], [3]), let (M, F)
be a Finsler space, where F' is a Finsler structure defined on an n-dimensional smooth
manifold M. Let H(TM) (resp. V(TM)) be the horizontal (resp. vertical) sub-bundle of
the bundle TTM. We use the notations R and P for the h-curvature and hv-curvature of
Cartan connection respectively. We also use the notations R and P for the h-curvature
and hv-curvature of Berwald connection respectively. Finally, 2R will denote the curvature
of the Cartan non-linear connection (Barthel connection).

1. Nullity and kernel vectors by the NF-package

In this section, we use the New Finsler (NF-) package [I1], which is an extended
and modified version of [6], to introduce a computational method for the calculation of
nullity vectors and kernel vectors.

Definition 1.1. Let R be the h-curvature tensor of Cartan connection. The nullity space
of R at a point z € TM is the subspace of H,(T' M) defined by

Np(2) = {X € H.(TM): R(X,Y)Z =0, VY, Z € H,(TM)}.

The dimension of Nr(z), denoted by pgr(z), is the index of nullity of R at z.

If pur(z) is constant, the map N : z — Ng(z) defines a distribution Ny of rank pg
called nullity distribution of R.

Any vector field belonging to the nullity distribution is called a nullity vector field.



Definition 1.2. The kernel space Kerg(z) of the h-curvature R at a point z € TM s
the subspace of H,(T M) defined by

Kerp(z) = {X € H,(TM): R(Y,Z)X =0,VY,Z € H.(TM)}.

As in Definition [L 1], the map z — Kerg(z) defines a distribution called the kernel
distribution of R. Any vector field belonging to the kernel distribution is called a kernel
vector field.

To calculate the nullity vectors and kernel vectors using the NF-package, let us recall
some instructions to make the use of this package easier. When we write, for example,
Nli,-j] we mean Nj’f, i.e., positive (resp. negative) index means that it is contravariant
(resp. covariant). To lower or raise an index by the metric or the inverse metric, just
change its sign from positive to negative or vice versa. The command “tdiff (N[i,-jl,
X[k])”means 0N}, the command “tddiff (N[i,-j], Y[k])” means 8kN]Z and the command
“Hdiff (N[i,-j], X[k])”means 9, N;. To introduce the definition of a tensor, we use the
command “definetensor”and to display its components, we use the command “show” as
will be seen soon.

Now, let Z € Ny be a nullity vector. Then, Z can be written locally in the form
7 = Z'h;, where Z* are the components of the nullity vector Z with respect to the basis
{h;} of the horizontal space, where h; := 821- - Nfaiyj and N/ are the coefficients of
Barthel connection; i,7 = 1,...,n. The equation R(Z,X)Y =0, VX, Y € H(T'M), is

written locally in the form

Al Rﬁljk =0.
To derive the resulting system from Z7 R;ij = 0, we first compute the components
R;ij using the NF-package. Then, we define a new tensor by the command “de-
finetensor” as follows:
> definetensor(RCZ[h,-i,-k] = RC[h,-i,-j,-kI*Z[j]);
> show(RCZ[h,-1i,-k]);

Putting RC'Z[h, —i, —k| = 0, we obtain a homogenous system of algebraic equations.
Solving this system, we get the components Z°.

Remark 1.3. It should be noted that we must not use the notation X = X*h,; nor the no-
tation Y = YA, for nullity vectors because RC[h, —i, —j, —k]*X[j] and RC[h, —i, —j, —k]*
Y[j] mean to Maple 2’ R?jk and 3’ RZ}-ij respectively, which both are not the correct ex-
pressions for nullity vectors.

In a similar way, we compute the components of a kernel vector. Let W = W'h; €
Kerg, then R(X, Y)W =0,V X,Y € H(TM). This locally gives the homogenous system
of algebraic equations:

W"R} ;. = 0.

Then by the NF-package, we can define

> definetensor(RCW[h,-j,-k] = RC[h,-i,-j,-k]*W[i]);
> show(RCW[h,-j,-k]);



Putting RCW h, —j, —k] = 0 and solving the resulting system, we get the compo-
nents W of the kernel vector W.

2. Applications and counterexamples

In this section, we provide three interesting counterexamples. We perform the com-
putations using the above mentioned technique and the NF-package. We also make use
of the technique of simplification of tesor expressions [I1].

The nullity distributions associated with Cartan connection are studied in [12]. The
following example shows that the nullity space Ng of the h-curvature R of Cartan con-
nection and the kernel Kerg do not coincide.

Example 1
Let M = {(z',....,2%) € RYa? > 0}, U = {(a',...,2% ¢y, ..,y") € R* x R* :
y?# 0,y*#0} C TM. Let F be defined on U by
F = (22%y1* + y2* + y3* + y4HY4,
By Maple program and NF-package we can perform the following calculations.
> FO := sqrt(x272xyl~4+y2~4+y3~4+y4~4);
FO = /22%y1" + y2* + y37 + y4"

Barthel connection

> show(N[i,-jl);
zl _ 1y2 z1 _ 1yl 2 _ _ 1z2y13 2 _ 1z2y1*
le — 312 Nz? — 3212 le T 3 g2z Nx? T 6 y23
h-curvature R of Cartan connection
> show(RC[h, -i, -j, -kI);
RO?! _ 1 3x24y184202%y1%y4 42984022y 14 413222y 14 y2% 44928+ 83y 24 4 8y 24y 4!
z2x1x2 18 x22(z22y14+y24+y34+y44)y24
RO 1 (s2%y184+2y34222y 1442222y 14y 47022y 1 y24 4 8y24 Y4 1+ 8y3% Y21 +12y28 ) y 12
zlzlz2 — 18 y26(x22y14+y24+y34+y44)
RCM _ 1 y13(4y24+x22y14) RCM _ 1 (4y24+x22y14)y33
rlxlz2 9 (z22y14+y24+y34+y44)y23 r3xlz2 18 x22y23(x22y14+y24+y34+y44)
RCI] _ 1 (4y24+l‘22y14>y43 RCQZ? _ 1 y13(4y24+x22y14)
13411}1132 18 z22y23(x22y14+y24+y34+y44) z2xlx2 9 (I22y14+y24+y34+y44)y23
RO _ 1 y13y33(4y2i+a22y1?) RO _ 1 y13y43(4y2i+a22y1?)
z3rlz2 18 y26(z22y14+y24+y34+y44) 13411}1132 18 y26(x22y14+y24+y34+y44)
RO 1 (4y2t+222y1t)y12ys RO _ 1 (4y2i+a22y1t)ysy1®
rlxlz2 18 (z22y14+y24+y34+y44)y23 z2x1x2 18 (I22y14+y24+y34+y44)y24
4 2 4 2 4 2 4 3
o o (4y2t+222y1t)y4y1 o 1 (ayetaeyrt)ygyr
RCzZIIzQ — 18 RCI2I1I2 — T 18

18 (222y114y2*+ysityst)y2? 18 (222y14+y2t+y3t+yst)ye?



R-Nullity vectors
> definetensor(RCW(h, -i, -k] = RC[h, -i, -j, -kI*W[jl);
> show(RCW[h, -i, -kl);

1 (822118 +13022y1y2 42022y 11y 142951022y 11 +8y2 y4 1 +4y28 18y 51 y2t ) W2

ROW?®, = L
toot = 18 22 (22214 y2dpy3i s ) y2?
RCW® , = 1 (B3224y18+413222y1y2 42222y 11y 1 +2y3 022y 14 +8y2 Y4 1 +4y28+8y51y2t ) W
272 — 18 2( 02,14 1 1 4),,04
222 (222y 1 +y2% +y3%+y4*) y2
RCW™ 1 (s21y18 47222y 11y2 1 2y5 022y 1142022y 11y 4 141228 48y 21y 14+ 8y51y2?t ) y1 2W 22
wlzl = 713 y28 (222y14 +y2t+y37+y4*)
ROW® = 1 (z2ty18+7222y11y21+2y34022y 1442222y 11y 4 1412925+ 8y2 1y 148y31y2t )y 1 2W !
z1z2 = 18 y28 (222y14+y2+y37+y4*)
ROWH  — 1 y13(4y24+I22y14)sz ROWH . 1 y13(4y24+x22y14)sz
vhed 9 (s22y114y2*+ysityst)y2? wE 9 (a22yt i hye byttt ) y2?
402, 14), 931122 d4a22y14)y3®
ROW®  — _ 1 (2l ys W g (192" +a2?y11)ysW !
2301 18 222y2% (222y1 " +y2i4y3 1y ") 2 = i 227y2® (a22y1 92" +y3 44 ")
ROW® = 1 (dwte2yi )W oy (4y2'+a2?y1t)ys Wt
el T2 = 18 222y23(222y 1+ y2i +y37 4y ")

18 222923 (22214 +y2* +y34 +y4 )

y1? (4y2+a22y1t )W
x22y14+y24+y34+y44)y23

y13(4y2t+a22y14)W=2
RCWxQz] = % 2 (4 1 1 ) 1\, 03 RCWzQxQ _é
(x? y1°+y2i+y3*+y4 )y2 (
3,93 4 2, 14\ /a2
1yl y3 (4y2 +x2°yl1 )W

18 y26(z22y14+y24+y34+y44)

1 y1Pys® (4y2t4a?yrt )Wl
1826 (222y1tty2ipy3ttyyt)

1 y1Pyd(4y2ta2?y1t)we
18 26 (222y14+y2*+y3*+y4*)

1 y13y43(4y24+x22y14)W“
18 28 (e22y1d 12t 1 ysirys?)

RCWz4x1 = RCWx4z2 =

1 (4y24+z22y14)y3y12W”2
18 (x22y14+y24+y34+y44)y23

RCW (4y24+x22y14)y3y12W“
rlz2 _8 2,14 1 1 3
222y144y24+y3ityst)y2

ROW™ = —

zlxl

(4y24+z22y14)y3y13W12
x22y14+y24+y34+y44)y24

(4y24+x22y14)y3y1 Syt
z22y14+y24+y34+y44)y24

RCWzQx] = %( RCWx2z2 - ig(

1 (4y2t4a22yrt)y12y w2 1 (4y2i4a22y1t)y1 2y wel

ROW™ = _1 RCW*™
rlxl 18 (z22y14+y24+y34+y44)y23 zlz2 — 8 (z22y14+y24+y34+y4 >y23
ROWH L (4y2t+222y1*)yqy13 W2 ROW™  — _1 (4y2t+a22y14)yqy13wo!
z2x1 18 (1:22y14+y24+y34+y44)y24 2x2 18 (z22y14+y24+y34+y44)y24

Putting RC WZ- = 0, then we have a system of algebraic equations. The NF-package
yields the following solution: W! = W? = 0,W? = s,WW* = t,; s,t € R. Then, any
nullity vector W has the form

W = Shg + th4. (2.1)

R-Kernel vectors
> definetensor(RCZ[h, -j, -k] = RC[h, -i, -j, -kI*Z[i]);
> show(RCZ[h, -j, -k1);



RCZH 1 y1?®(4y2t+a22y1t) 2!
12 T 9 (20247144 9241454 4) 423
x2yl +y2 +y3°+yi” )y
1 (3x24y18+13x22y14y24+2z22y14y44+2y34z22y14+8y24y44+4y28+8y34y24)212
18 222 (222y 14 +y2*+y374y4 )yt
1 (4y2t+a22y14)y3®ze? 1 (4y2t+a22y14)yyd 2o
18 x22y23(z22y14+y24+y34+y44) 18 x22y23(z22y14+y24+y34+y44)

ROZ™ 1 (22154 Te22y11y2 4293002 y1 1 12002y 1 0y 4 412925 18y2 g4 48y3 Y2t )y12 27!
zlz2 — 18 y26(x22y14+y24+y34+y44)
L1 yrt(agetta2?yrt)zet yrPysd(ayetaes?ynt)Ze q yiPyt(ayetres?yl?t) 2o
9 (s22y1t4y2itystityst)ys® 18 y26(a22y1tpy2itysttyyt) 18 420 (a22y1ty2itysityy?)

29 1 (4w2t4a22y1t)ysy12 2! 1 (4y2t4a22y1t)ysy1® 2+
RCZIIzQ = 18 - 1

18 (z22y14+y24+y34+y44)y23 18 (z22y14+y24+y34+y44)y24

RCZ% , = 1 (4y24+z22y14)y12y4Z“ 1 (4y24+z22y14)y4y13Z12
zlx

18 (222y1i4y2itysivyst)y2s 18 (a22y1ipy2iystiyst)y2t

Putting RCZ Z = 0, we obtain a system of algebraic equations. The NF-package

vields the solution: Z' = 24 72 = 5, 73 = t and 7% = @20 +20i+20)tyays
Y2’ ! Y2y '
Then, any kernel vector Z should have the form '
4 4 2 4 2 4 3
Z=s(Dhy phy PUTRTTGA ( B ) (29
3 3
Y2 Y2Yi Ya

(for simplicity, we have written z; and y; instead of z* and y’ respectively)
Comparing (2.1) and (2.2), we find no values for s and ¢ which make Z = W.
Consequently, N and Kerg can not coincide.

In [9] Youssef proved that the nullity distribution Ng. associated with the h-curvature
R of Berwald connection is completely integrable. He conjectured that the nullity distri-

bution Nps of the hv-curvature P of Berwald connection is not completely integrable. In
the next example, we show that his conjecture is true.

Example 2
Let M = R3 U = {(2', 2%, 23y 9% y?) e R3xR? : yl £ 0} € TM. Let F be

defined on U by
F:=e" (y23 + e "y 9 y12)1/3 .

By Maple program and NF-package, we can perform the following calculations.
> FO := exp(-2%x1)*(y2~3+exp(-x1*x3)*y3*y1~2)~(2/3);
FO = e—2z1 (y23+e—x1z3y3 y12)2/3

Barthel connection
> show(N[i,-j1);

Nif = =5 (3+23) yI Nit = —3y2 N = -3yl

3 _ _3_ y2® 3 _ 9_ y2? z3 _
Nx] - _Zy12671113 Nx,@ - Zy167x1x3 NzS’ - _ygxz



hv-curvature J?’ of Berwald connection
> show(PB[h,-i,-j,-k]);

z3 _ 9 y2’ z3 _ 9 y2?
PBxlxle - §y14671113 PBxlexQ - §y136*1113
_ _9 y2 — 9
PBxlex? - 2 y12e—wlz3 PBzQxQzQ T 2yle—xlz3

]-Q’-Nullity vectors
> definetensor(PBW([i,-h,-k] = PB[i,-h,-j,-k]*W[jl);

> show(PBW[i,-h,-k]);
o _9 y23wz1 9 y22wz2 o 9 yQW{El 9 Wz.?
PBWx]zI = ) ylie—ale3 + b} y13c—wle3 PBWJ:QIQ ) y12e—xlz3 + 2 yle—zlz3
_ 9 y2Pwr 9 yew®? 9 y22wel 9 y2Ww®?
PBW 3, = 2y1le~wle3 3 y1Ze—wlad PBW 51 = 2yLPe==1e8 2 y[Pemales

Putting PB WZ- = 0, we get a system of algebraic equations. We have two cases:
The first case is y2 = 0 and the solution in this case is W! = s, W2 = 0 and W?3 = t.
Hence, any}%-nullity vector is written in the form W = sh; +ths. Take two nullity vectors
X,Y € Npo such that X = h; and Y = hs. Their Lie bracket [X,Y] = —%18%1 +y38%3,
which is vertical.

The second case is y2 # 0 and the solution in this case is W! = s, W? = 225 and W3 =t.

Then any p- nullity vector is written in the form W = s(hi + £hy) + th3 Let X and Y

be the two nullity vectors in Npo given by X = hy + y2 hg and Y = hs. By computing
their Lie bracket, we find that [X,Y] = —7@ + ygw, Wthh is vertical.
Consequently, in both cases the Lie bracket [X,Y] does not belong to NVpo.

Let Nzo and Ny be the nullity distributions associated with the h-curvature R of
Berwald connection and the curvature R of the Barthel connection respectively. In [9],
Youssef proved that Nz C Nx. The following example shows that the converse is not
true: that is Nge is a proper sub-distribution of Nx.

Example 3

Let M =RY U ={(z* -, 2%yt ,y) e R* xR : 32 40,y #0} C TM. Let
F be defined on U by

1/2
F = (e_wyl {s/y23+y33+y43> .
By Maple program and NF-package, we can perform the following calculations.

> FO := exp(-x2)*ylx(y2~3+y3~3+y4~3)~(1/3);
FO = e "2yl /y2° + y3° + y4°

Barthel connection
> show(N[i,-j1);

N2 _14y234y33+y4s N22 ﬁ N2 3

z2 1 y22 z3 4 y2 T4 T 4 y2



NZ—-%y3 N =3y

Nig=—yi N =—4y2

Curvature ‘R of the Barthel connection

> show(RG[i, -j, -kI);
RGxng = —%ygz(y23:29433+y43)
Rsz = —%y42(y23;y433+y43)
RGy,, = %%2

R-nullity vectors

> definetensor(RGZ[i, -j]

_ 3 y23+y3i4y4’
RGxQxS - Ey 322 a
_ 3 y23+y334yy’
RGI2z4 — 16 y22
9 y32
RGJ:31:4 - _Eyy_g
= RG[i, -j, -kI*Z[k]);

> show(RGZ[i, -j1);
RGzee — _ 3 vy )2 g ua? (st hus®) 2
2 16 y2t 16 L
RGZ™ — iy32(y23+y33+y43)2”2 RGZ 3 yi? (y234+y834ys?) 22
3 T 16 y2* J27
y23+y334y43) 279 3y23+y33+y43 Z2 2 a4
RGZ3; = 3 RGZ™ 9y4
o ves = 16,27 1692
34,931 43 74
@3 _ _ 9 y4?z% o 3 (¥22+y3*+us)z
RGZ;E4 16 y2 RGZIQ = 16 y22
RGZY = — 232" RazH — 3 )2 g ygrge

Putting RGZ" = 0, we get a

system of algebraic equations.

In the case where

Y23 4+ y32 + y4® = 0, we get the solution Z! = t;, Z? = t, and Z3 = Z* = 0 where

t1,to € R. Then,

Z - tlhl + tghg.

h-curvature]—gi of Berwald connection:

> show(RB[i, -h, -j, -kl);
RB™ 3 (y23+4y43+4y3° ) ys? RE 3 (2y23+2943+5y3%)y3
z2x228 — 16 y25 323 — T 16 y27
_ 9 y4%ys? _ 3 y23-2¢33-2943 _ 9 y3?
RBx4x2x3 — T 16 y2t RBx2x2x3 16 y23 RBx3x2x3 16 y22
g 2 3 (y23+4y43+4y5° ) y4? 9 y42ys?
RBx4x2x3 — 16 y22 RBx2z2x4 425 RBz3x2z4 T 16 y2f
3 (2y23+5y43+2y33)y4 — 3 y23—2y33 2443
RBI4$2I4 — 16 y24 RBz2x2z4 423
9 332 9 y4? 9 y4°
RBz3x2z4 — 16922 RBx4x2x4 16 y22 RB$29&5’$4 EW
_ 94 9 y32 9 y3
RB z4x3rf — 8 y2 RB 21554 16 y22 RB 88t — 8 y2
R-nullity vectors
> definetensor(RBW[i, -h, -k] = RB[i, -h, -j, -kI*W[jl);

(2.3)



> show(RBW[i, -h, -k]);

3 (y23+4y43+4y33)y32ww3 3 (y23+4y43+4y33)y42ww4

RBWzQxQ = 16 y2° T 16 y2°
REW™ . 3 (y2°+4y43+4y3% ) Wo2ys? RBW  — 3 (y23+4y43+4ys3 ) W2y
z2x3 — 16 425 x2x4 y2°
3 3 3 z8
3 (29234243 +5y3%)ysw 0 y42y32 Wt 0 Weyy2ys?
RBW,, = 1% 71 + 15Ty RBW 35 = — 150
3 3 3 z2
3 (202 42u4%+5y3%)Wys L9 Weyy2ys?
RBWzgw - T 16 y2t RB Wx4z3 T 16 y2*
RBW 9 y42y32wz3 3 (2y23+5y43+2y33)y4W’4 RBW ng3y4
w2 = 16 y2* T 16 2 A
REBW™  — 3 (2u2%45y4342y5% ) Wty REWT _ 3 (v2P-2ysi-2y®)wes
T4T4 16 y24 212 16 y23

3 _9493_94,3)1772 .
RBW, , — 3 (228 2UNWE o ety
T2X.

16 y23 16~ y2°

9 Wy
RBWMM 16 y22

o 9 Wm3y32 o 9 W12y32 o 9 W13y42
RBWszQ — T 16 y2? RBWz3x3 16 y2? RBWx4z2 T 16 y2?

3 (y2®—2y33 2943 ) W4

_ 9 Wy 9 y4 W
RBWJ:41,‘3 — T ) RBW{EQZ‘Q 16 y23

16~ y2? 8 2

(y23—2y33—2y4 w2 9 Wty

RBW, , = —2 W ys RBWW =

16 y22 y23 16 y22
_ 9 Wmy3? _ 9W™ys _ 9 W*2y4?
RBW o iwz2y32 B ngwz.? RBW o 9 Wz4 y42
x3r4 — 16 y22 8 12 z4x2 T T 16 y22

Putting RB Wh = 0, we obtain a system of algebraic equations. This system has the
solution Wt =t t e R and W? = W3 = W* = 0. Then,

Consequently, ([2:3) and (Z4) lead to Ny & Ngo.

3. Conclusion

In this paper, we have mainly achieved two objectives:

e A computational technique for calculating the nullity and kernel vectors, based on
the NF-package, has been introduced.

e Using this technique, three counterexamples have been presented: the first shows
that the two distributions Kerr and Ny do not coincide. The second proves that the
nullity distribution Aps is not completely integrable. The third shows that the nullity
distribution My is not a sub-distribution of Ngeo.
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